RHex Slips on Granular Media
نویسندگان
چکیده
RHex is one of very few legged robots being used for realworld rough-terrain locomotion applications. From its early days, RHex has been shown to locomote successfully over obstacles higher than its own hip height [1], and more recently, on sand [2] and sand dunes [3], [4] (see Figure 1). The commercial version of RHex made by Boston Dynamics1 has been demonstrated in a variety of difficult, natural terrains such as branches, culverts, and rocks, and has been shipped to Afghanistan, ostensibly for use in mine clearing in sandy environments [5]. Here, we discuss recent qualitative observations of an updated research version of RHex [6] slipping at the toes on two main types of difficult terrain: sand dunes and rubble piles. No lumped parameter (finite dimensional) formal model nor even a satisfactory computational model of RHexs locomotion on sand dunes or rubble piles currently exists. We briefly review the extent to which available physical theories describe legged locomotion on flat granular media and possible extensions to locomotion on sand dunes.
منابع مشابه
Multilaminate Elastoplastic Model for Granular Media
A multilaminate based model capable of predicting the behavior of granular material on the basis of sliding mechanisms and elastic behavior of particles is presented. The capability of the model to predict the behavior of sand under arbitrary stress paths is examined. The influences of rotation of the direction of principal stress axes and induced anisotropy are included in a rational way witho...
متن کاملUniversal slip dynamics in metallic glasses and granular matter – linking frictional weakening with inertial effects
Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing...
متن کاملUnjamming dynamics: the micromechanics of a seismic fault model.
The unjamming transition of granular systems is investigated in a seismic fault model via three dimensional molecular dynamics simulations. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, allow us to characterize the stick-slip dynamics, consisting in large slips and microslips leading to creep motion. The correlation functio...
متن کاملRHEX in the mix of erythropoietin signaling molecules
1704 INSIGHTS | The Journal of Experimental Medicine Erythropoietin (EPO) is of immense practical clinical utility in the treatment of anemia, and insight into EPO-regulated signaling pathways may reveal new targets for the treatment of dysregulated erythropoiesis. While significant headway has been made in understanding the intracellular signals mediating the effects of EPO through the homodim...
متن کاملStability Analysis of a Clock-Driven Rigid-Body SLIP Model for RHex
We apply the stability analysis for hybrid legged locomotion systems, introduced in our companion paper in this issue, to a new simple clock-driven SLIP model inspired by the robot RHex. We adopt in stance phase the three-degrees-of-freedom (3DoF) spring loaded inverted pendulum (SLIP) model introduced in our companion paper to capture RHex’s pitching dynamics in the sagittal plane. The coordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015